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The single-crystal elastic moduli of yttria have been measured by Brillouin
spectroscopy up to 1200 °C. The room temperature values obtained are C;; =
223.6 + 0.6 GPa, C4y = 74.6 £ 0.5 GPa,and Cjp = 112.4 + 1.0 GPa. The resulting
bulk and (Voigt-Reuss-Hill) shear moduli are K = 149.5 + 1.0 GPa and Gygu =
66.3 + 0.8 GPa, respectively. These agree much more closely with experimental
values reported for polycrystalline samples than do previous single-crystal
measurements. Linear least squares regressions to the variation of bulk and shear
moduli with temperature result in derivatives of dK/dT = -17 + 2 MPa/°C and
dGygu/dT = -8 + 2 MPa/°C. Elastic anisotropy was found to remain essentially
constant over the temperature range studied.

PACS numbers: 62.20.Dc



I. Introduction

Yttria, or yttrium sesquioxide (Y,03), is a refractory material with a cubic crystal
structure.! Yttria, in the form of dense polycrystalline ceramics, has been considered for
use in nuclear applications? and has gained interest relatively recently for use in infrared
optics.1:3:4 Due to yttria’s optical isotropy (resulting from its cubic structure), it is
possible that, in the future, optical components requiring high quality may be made from
single crystals. The single-crystal elastic moduli are valuable for designing such optical
components. In particular, the temperature derivatives of elastic moduli allow
dimensional changes due to heating under physical constraint, as well as acoustic
excitation to be determined. The single-crystal elastic moduli are also useful in
understanding the fundamental physics of yttria. Single-crystal yttria fibers suitable for
such elasticity measurements have recently been produced using a laser-heated, float zone
technique.’

The elastic properties of pure and doped polycrystalline yttria have been
determined by several authors®-13 including measurements to high temperatures.!-2.14 In
addition, single-crystal measurements have been reported at room temperature. 1316
There are, however, significant discrepancies between the bulk and shear moduli reported
for dense polycrystalline materials and those calculated from the previously reported
single-crystal moduli. The purpose of this study was to obtain accurate values of the
single crystal elastic moduli of Y,0; both at room and elevated temperatures.

Brillouin scattering offers a convenient means of measuring the complete set of

elastic moduli for single crystals, especially at elevated temperatures. It requires no
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physical contact with the sample, is capable of measuring along numerous
crystallographic directions in a single sample, and requires only small sample volumes.
Brillouin scattering arises from the inelastic scattering of photons from acoustic phonons
in the sample. The scattered light is shifted in frequency with respect to the incident light

by a factor that is proportional to the velocity of the acoustic waves (Eq. 1).17

SCE

Here V is the velocity of an acoustic wave, Aw is the frequency shift of the scattered light,
 is the frequency of the incident light, c is the speed of light, n is the index of refraction
of the sample, and 8 is the scattering angle. In this study, we employed a special case of
symmetric scattering called platelet geometry (Figure 1), which utilizes a sample with flat,
parallel faces and equal angles between the face normals and incident/scattered beam
directions. The phonon propagation direction q is in the plane of the sample, and the face
normals as well as the incident/scattered light rays all lie within a plane.!8 Figure 1 shows
a schematic of symmetric platelet scattering. With symmetric platelet scattering
geometry, the scattering angle is easily defined, and no knowledge of the index of the
refraction of the sample is necessary. As seen in Figure 1, Snell’s law allows the

replacement of n sin(8/2) with ngsin(8,/2) in Eq. 1. This is particularly beneficial for high



temperature studies where the variation of index of refraction with temperature is
generally unknown and difficult to measure.

The elastic waves may be treated by a continuum mechanical analysis which
relates their velocities along a given crystallographic direction to the adiabatic elastic

moduli and density of the material via Christoffel’s equation (Eq. 2).1?

Fijququ - pVZBik =0 (2)

Ciju is the elasticity tensor for the material, p is the density, and & is the Kronecker delta
function. Since yttria has cubic symmetry, there are only three independent, nonzero
components in its elasticity tensor, C] |(=C22=C33), C12(=C13=C23), and C44(=C55=C66) (m

Voigt notation).20

II. Experiment

A. Samples

Samples for this study were taken from single-crystal fibers grown from high
purity Y,03 powder by a laser heated float zone (LHFZ) technique.>-2! This
containerless technique uses a scanned CO, laser beam (10.6 pm wavelength) that is split
and focused at the tip of a polycrystalline source rod to produce a melt which is held

between the source and product phases by surface tension. Temperature in the molten




region was stabilized using infrared pyrometery, but absolute temperature was not
determined because the emissivity of molten yttria is not known.

For preparation of the source rod, high purity (99.999% pure) polycrystalline yttria
powder (Alpha Aesar) was used. Since the LHFZ technique is essentially a zone refining
process, the final purity of the yttria crystal is likely even higher. This powder was
blended with 5 weight % binder (Methocel 20-231, The Dow Chemical Company,
Midland, MI 48674) and glycerin was used as a plasticizer in a water based slurry. The
slurry was then degassed overnight with a moderate vacuum (~70x103 Pa) to achieve a high
viscosity paste. This paste was extruded with a custom-made mini-extruder, i.e. a modified
hypodermic syringe. The plastic syringe wall was replaced within high wear regions to
avoid contamination. At least two extrusions were made to minimize porosity in the paste.
The extruded source rod was normally 250 pm in diameter and extruded lengths were 15 to
20 cm long. The rods were furnace dried in air at 200 °C for approximately 1 hour and
placed in the LHFZ apparatus without any presintering.

At steady state, the source to fiber diameter ratio is inversely proportional to the
square root of the feed rod to pull rod velocity ratio. The fibers used for the Brillouin work
had nearly circular cross sections with average diameters slightly less than 500 um. For
fibers grown in this study, the molten zone height was kept constant at approximately one
and half times the fiber diameter, and fibers were grown in air.

Octahedral cleavage was apparent in fragments broken from the fibers and
showed that the fiber axis coincided closely with the <111> crystal direction. The

material was clear except for occasional inclusions that appear to be bubbles. The
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samples were optically isotropic when examined under cross polarized light. An X-ray
analysis was performed on a large fiber sample by four circle diffractometry, in order to
verify the single-crystal nature and cubic symmetry of the samples. Precise values of the
lattice parameter at all temperatures were calculated from the regression equation of

Taylor (Eq. 3),22

a(T) = (1.06016 nm) (1 + 6.76x10° T + 1.22x10° T?) (3)

where a(T) is the cell edge parameter at a temperature T (in °C). A value of 1.0603 nm
(corresponding to 22°C) yielding a theoretical density of 5.033 g/cm® (which matches that
reported by Tropf and Harris!) was used for all room temperature calculations.

Velocity measurements were performed on a single sample. It was ground into a
flat plate with a thickness of ~150 um.23 Due to breakage during sample preparation, the
usable area of the sample faces was around 250 um x 250 um. The ground faces
corresponded closely to the {100} crystallographic plane. Orientation was accomplished
by optical goniometery from cleavage planes, and measurements subsequent to grinding

showed the face to be within ~2° of the {100} face.

B. Brillouin Scattering
[llumination of the sample was provided by the 514.5 nm line of an Ar" laser at a
power of 200 mW or less for the ambient temperature measurements. For high

temperature runs, a laser power of up to 400 mW was used to maximize the Brillouin
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signal since sample heating was not a particular concern. Higher power was necessary for
high temperature experiments because of the furnace windows which reduce the
intensities of both the incident and scattered beams by partial reflection and introduction
of astigmatism into the focusing and collecting optical paths. Scattered light was collected
through a slot with an angular acceptance of approximately 5.5° in the scattering plane to
lessen broadéning of Brillouin peaks. The scattered light was analyzed by a 6-pass,
tandem, Fabry-Perot interferometer. The spectrometer has been described in detail
elsewhere.24:25

Room temperature measurements were performed with a 90° scattering angle. An
Eularian cradle was used to rotate the sample around its face normal to access different
phonon directions. The high temperature results of this study were obtained using a
compact furnace mounted on the Eularian cradle, allowing multiple phonon directions to
be collected without remounting the sample. The construction and operation of this
furnace is described elsewhere.26 An 80° scattering angle was used for the high
temperature work. Velocities calculated from the measured Brillouin shifts were used ina

linearized inversion algorithm?7 to solve for the elastic moduli.

I11. Results and Discussion

Velocities measured at room temperature, in the plane ~(001) (outside the
furnace), have a close correspondence to fits from the calculated elastic constants (solid
curves Figure 2). This figure gives a sense of the anisotropy in yttria. Longitudinal

velocities vary by ~ 4% in this plane, while shear velocities vary by ~ 15%.
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The adiabatic elastic constants obtained are given in Table I along with those
reported by Aleksandrov et al. (also measured using Brillouin spectroscopy)!%:16 Errors
in Table I include contributions due to residuals of the velocity fits as well as uncertainty
in sample orientation.23 There are substantial differences between Aleksandrov’s values
and those obtained here (Cy; +1.5%, C44 —8%, C); +20%). Table II lists the bulk
modulus, K, and shear modulus, G, calculated from the room temperature constants using
the Voigt, Reuss, and Voigt-Reuss-Hill averaging schemes (denoted by subscripts V, R,
and VRH respectively) for both this study and for Aleksandrov et al. For comparison,
values of K and G (adiabatic) reported previously by several authors for polycrystalline
yttria are included in Table II. The values reported by Manning?® are a Spriggs
extrapolation to zero porosity from samples with porosity ranging from 4-22 %, whereas
those of Yeheskel!3 and Tropf! are uncorrected, and correspond to samples of greater
than 99% theoretical density. This fact may account for the differences in bulk modulus.

The values of Aleksandrov et al.15:16 for K and Gygy are 11% higher and 14%
lower, respectively, than those reported here. Clearly, the current measurements agree
much more closely with polycrystalline measurements than those of Aleksandrov et al.
No details of the quality or properties of the sample are reported in the previous single
crystal study,!5 but these aspects may partially account for some of the discrepancies.
Another possible explanation is a misorientation of the sample used in the previous
study. The differences decrease in the order: |JAC,5/Cyy| > |AC44/Cyg| > |AC,1/Cyyl. Ingel
and Lewis derived a similar relation of relative magnitudes of deviation for misorientation

in Y,0; stabilized ZrO, along certain directions.?8 Aleksandrov et al. calculated moduli
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based on the longitudinal and shear (degernerate) velocities along [100] for which the
reported values are 6.75 + 0.02 km/s and 3.71 + 0.03 km/s, respectively, as well as both
shear velocities along [0.5 0.5 1//2] which are reported as 3.43 £ 0.02 km/s and 3.69 +
0.01 km/s.!S Similar velocities result from Eq. 2 using the elastic moduli determined in
this study, if a rotation of ~ 13° around [010] is applied to the coordinates of
Aleksandrov et al. (i.e. [100] becomes [0.9744 0 0.2250], and [0.5 0.5 1/V2] becomes
[0.3281 0.5 0.8015].) The resulting longitudinal and shear velocities along [0.9744 0
0.2250] are 6.726 km/s and 3.745 km/s. (The other shear mode with a velocity of 3.849
km/s is polarized along [010]. Since the incident and scattered beams were directed along
[110] and [-110] (in the original coordinate system),!5 this wave is polarized in the
scattering plane and would have zero scattered intensity.29) The shear velocities along
[0.3281 0.5 0.8015] are 3.710 km/s and 3.454 km/s. Aleksandrov et al. report the
accuracy of face orientation as 3 to 5° 15 but this degree of misorientation cannot account
for the differences with the current study.

The variation of the single-crystal elastic moduli with temperature is consistent
with a linear trend as shown by Figure 3. Table Il lists values for the adiabatic constants
determined at elevated temperatures. Errors given again include contributions from
residualé in the fit as well as uncertainty in sample orientation.23 Higher order
polynomial fits to these results are not warranted, given the uncertainties in the data. The
temperature derivatives of the elastic moduli from the linear fits are listed in Table IV
along with those for the bulk modulus and Voigt-Reuss-Hill shear modulus. Errors in the

temperature derivatives are based on the 95% confidence intervals for the slope of the
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linear fit. An error of +5% is given in temperature itself based on uncertainty in the gain
of the amplifier used in measuring temperature. This may contribute to an absolute error
in slope, but the internal temperature precision is much better (<3%).23 Furthermore, the
uncertainty in slope is dominated by errors in velocity, not in temperature.

Figures 4 and 5 show the temperature dependence of bulk and shear (Voigt-Reuss-
Hill) moduli respectively. Also shown are values measured by Dickson and Anderson
using a resonance technique (resulting in adiabatic moduli) on a 0.91 Y,03°0.09 ThO,
polycrystalline sample.14 There is a slight offset in bulk modulus, but the rate of
softening with temperature is similar for both materials. Linear fits to the data of Dickson
and Anderson!4 yield slopes of -15.3 MPa/ °C and -8.5 MPa/ °C for bulk and shear
modulus respectively. The offset in bulk modulus may be due to composition, but no
estimate of possible errors is given by Dickson and Anderson!4 so the differences may be
insignificant.

Figure 6 shows the Young’s modulus for yttria calculated from Eq. 4,

IK+ G )

along with the data of Price and Hubbert,3 Dickson and Anderson,14 a linear fit to the
data of Marlowe and Wilder up to 1000 °C,2 and a fit suggested by Tropf and Harris!
(based on data from Price and Hubbert3?). The fit to the data of Marlowe and Wilder2

yields a slope of -19.5 MPa/ °C. Tropf and Harris! infer a pronounced softening of Y,03
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at high temperature and a rapid non-linear decrease in elastic modulus at temperatures
greater than 1200 °C. The present results do not support such a high order variation in
elastic modulus, at least not within the temperature range of this study. The constants of
Dickson and Anderson'4 and Marlowe and Wilder? are adiabatic while those of Price and
Hubbert30 are for constant temperature.

Elastic anisotropy for a cubic crystal may be characterized by the factor, A,

computed using Eq. 5.

A = 2C44 +C12
Cy

-1 &)
The elastic constants measured here yield a value for A of 0.170 0.015, while those of
Aleksandrov et al. yield 0.212.15.16 For comparison the values of A for MgO, BaO, and
yttrium aluminum garnet (Y3Al;0;2, YAG) are 0.37, -0.07 and 0.02, respectively.16

The anisotropy does not vary significantly over the temperature range measured.
There appears to be no systematic trend, and no variations in A within the error of the
measurement. This contrasts with the behavior of several other oxides which show
marked changes with temperature (Table V).

It is possible that this behavior simply results from a peculiarity of the
interactions of Y and O, namely that they do not change substantially with temperature,
but it is also possible that the constance of anisotropy with temperature is partially tied

to the structure of yttria.
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To a rough approximation, the elasticity of a crystal may be described by pair
potentials between neighboring atoms and 3-body terms which give a potential energy
based on the angle of two bonds attached to a central atom. For the halite structure, these
may be related qualitatively to the macroscopic elasticity tensor. The halite structure
consists of octahedra whose points are directed along the <100> crystallographic
directions.3! Therefore, tension or compression along <100> directions (C;;)
corresponds to a change in length of the bonds which are all directed toward the points of
the octahedra (i.e. <100> directions). Shear along the <100> directions (Cy44), however,
results in the bending of 3 atom groups. Therefore, to a first approximation, a change
with temperature, of only the pair potentials between atoms would result in a change in
C, leaving C44 unaffected, and vice versa for a change in the 3-body term. Though
oversimplified, this analysis suggests that the halite structure would show comparable
changes in its macroscopic moduli and its fundamental atomic interactions (i.e. the relative
resistance to bond stretching/compression as compared to 3-body bending).

Yttria also has 6-fold coordinated cations. It’s structure (bixbyite), however, is
much more complex than that of halite, with 16 formula units per cell, and the
coordination polyhedra in yttria are not regular octahedra.3! They are substantially
deformed, and the structure is sometimes described as having cubic coordination for Y**
with O ions at opposite corners of the cube missing, essentially a defect fluorite
structure.2232 Regardless of the description of the structure, the Y-O bonds point in
many crystallographic directions. Therefore, unlike compounds with the halite structure,

uniaxial forces along any crystallographic direction will involve both
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stretching/compression of bonds and 3-body bending. Therefore, a change in relative
resistance of one of these as compared to the other may produce a much smaller change in
the macroscopic moduli and hence the anisotropy.

This hypothesis is supported by the relatively low change in anisotropy with
temperature for other crystals with a complex relationship between bond directions and
the unit cell. This is seen for YAG in Table V, and applies to several other garnets such
as almandine and pyrope.16 Like yttria, garnets have a complex crystal structure with
irregular coordination polyhedra. Spinel also follows this trend with a relatively low
value of dA/dT.1633 Various I1I-V compounds with zinc-blende lattices, such as GaAs or
GaSb, and elements with diamond cubic lattices, such as diamond and silicon, show very
low changes in anisotropy with temperature as well.16 These structures also experience a
combination of bond stretching/compression and 3-body bending, for both uniaxial

tension and pure shear along high symmetry directions.

IV. Conclusions

The single-crystal elastic moduli of yttria were measured using Brillouin
spectroscopy at room temperature and high temperatures ranging to 1200°C. The room
temperature values differed significantly from previous single-crystal measurements,!5:16
but bulk properties calculated from the present study agree much more closely with most
literature values reported for polycrystalline yttria.1.89,11.13 This is important since it

suggests that the elasticity of polycrystalline yttria ceramics can be accounted for by the

elasticity of the Y,0; crystal lattice itself. No second phase or secondary effect is
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indicated here as may have been suggested by the previous results. Sample misorientation
in the previous study is offered as a potential reason for the discrepancy.

All elastic moduli display a modest linear decrease over the temperature range
studied. The variation of bulk and shear moduli with temperature correspond closely to
those reported for a 91Y,03°9ThO, compound.!4 Likewise, the change in Young’s
modulus with temperature agrees well with measurements on pure polycrystalline yttria.2
Since accurate determinations of the temperature variation of properties for
polycrystalline yttria ceramics have been made previously,214 perhaps the more
important addition of this study is the temperature dependence of elastic anisotropy,
which was found to remain essentially constant for yttria as compared to significant
changes for several other oxides with simpler cubic structures. A possible relation

between the elastic anisotropy change with temperature and structure is proposed.
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Table I: Room temperature elastic constants of yttria

Modulus This study Aleksandrov, et al.15.16
C11(GPa) 2236+ 0.6 227
Cy4(GPa) 74.6 + 0.5 68.6
C12(GPa) 1124+1.0 138

19



Table II: Measured and calculated bulk properties of yttria at room conditions

K (GPa) Gy (GPa) Gr(GPa) Gygi(GPa) Gpoyorystat (GP2)  Ref.

149.5+1.0 670+0.8 656+08 663+0.8 This Study
167.7 59.0 56.4 57.7 15,16

148.9 + 3.0 69.2 +2.0 13

145 67 I

146.2 69.42 8
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Table III: Measured elastic constants for yttria at elevated temperatures

T(C) Cy (GPa) Cu(GPa) Cj;(GPa) K (GPa)  Gyru(GP2)

202 225.1 74.6 113.6 150.8 66.4
22° 222.4 73.7 110.8 148.0 66.0
200 221.1 73.4 110.6 147.5 65.5
400 216.9 72.8 108.0 144.3 64.8
600 212.2 70.4 106.7 141.8 62.7
800  206.2 69.0 102.5 137.1 61.5
800®  205.3 67.3 103.2 137.2 60.3
1000  199.1 65.3 99.5 132.7 58.6
1200  193.6 63.7 97.9 129.8 56.8

2 Experimental run to 800°C. Errors for this run are +0.7% for C,;, +3.3% for Cy4, and
i19% for CIZ'
b Experimental run from 800°C to 1200°C. Errors for this run are +0.9% for C,;, +3.4%

for C44, and +3.5% for C».
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Table IV: Fitted temperature derivatives for single-crystal and bulk elastic properties of

yttria

Modulus Temperature Derivative (MPa/ °C)
Ci -26 +3

Cy 9+2

Cp, -13+2

K -17+2

Gyru -3+2
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Table V: Comparison of changes in elasticity and anisotropy with temperature for several

oxides

All temperature  Y,0; MgO 16 BaQ 16 Y;AL0, (YAG) 16
derivatives pres. study

in (10%/K)

(dC,/dT)/Cy -1.14+0.13 2.0 -3.7 -0.9

(dCya/dT)/Cys -1.21+£024  -0.8 -1.16 -0.7

(dC/dT)/Cy2 -1.11+0.18 0.7 0 -0.52

A 0.170+0.015 0.37 -0.07 0.02

dA/dT 0+0.1 2.1 2.8 0.3
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Figure 1: Schematic of symmetric platelet scattering geometry
Figure 2: Room temperature velocities in the {100} plane of yttria.
Figure 3: Single-crystal elastic moduli at high temperature

Figure 4: Variation of the bulk modulus of yttria with temperature
Figure 5: Variation of the shear modulus of yttria with temperature

Figure 6: Variation of the Young’s modulus of yttria with temperature.
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